# Dark Energy and Cosmic Sound

Daniel Eisenstein (Steward Observatory)

Michael Blanton, David Hogg, Bob Nichol, Roman Scoccimarro, Ryan Scranton, <u>Hee-Jong Seo</u>, Max Tegmark, Martin White, <u>Idit Zehavi</u>, Zheng Zheng, and the SDSS.

## Dark Energy is Mysterious

- Observations suggest that the expansion of the universe is presently accelerating.
  - Normal matter doesn't do this!
  - Requires exotic new physics.
    - Cosmological constant?
    - Very low mass field?
    - Some alteration to gravity?

- We have no compelling theory for this!
  - Need observational measure of the time evolution of the effect.



## A Quick Distance Primer

- The homogeneous metric is described by two quantities:
  - The size as a function of time, a(t). Equivalent to the Hubble parameter
     H(z) = d ln(a)/dt.
  - The spatial curvature, parameterized by  $\Omega_{\rm k}$ .
- The distance is then

$$D = \int_0^z \frac{c \, dz}{H(z)}$$
 (flat)

> H(z) depends on the dark energy density.



## Dark Energy is Subtle

- > Parameterize by equation of state,  $w = p/\rho$ , which controls how the energy density evolves with time.
- $\rightarrow$  Measuring w(z) requires exquisite precision.



- Varying w assuming perfect CMB:
  - Fixed  $\Omega_{\rm m}h^2$
  - $D_A(z=1000)$
- dwldz is even harder.
- Need precise, redundant observational probes!

**Comparing Cosmologies** 

#### **Outline**

- Baryon acoustic oscillations as a standard ruler.
- Detection of the acoustic signature in the SDSS Luminous Red Galaxy sample at z=0.35.
  - Cosmological constraints therefrom.
- Large galaxy surveys at higher redshifts.
  - Future surveys could measure H(z) and  $D_A(z)$  to few percent from z=0.3 to z=3.
  - Assess the leverage on dark energy and compare to alternatives.

#### **Acoustic Oscillations in the CMB**



Although there are fluctuations on all scales, there is a characteristic angular scale.

#### **Acoustic Oscillations in the CMB**



WMAP team (Bennett et al. 2003)

#### Sound Waves in the Early Universe

#### Before recombination:

- Universe is ionized.
- Photons provide enormous pressure and restoring force.
- Perturbations oscillate as acoustic waves.

#### After recombination:

- Universe is neutral.
- Photons can travel freely past the baryons.
- Phase of oscillation at t<sub>rec</sub> affects late-time amplitude.



#### Sound Waves

- Each initial overdensity (in DM & gas) is an overpressure that launches a spherical sound wave.
- This wave travels outwards at 57% of the speed of light.
- Pressure-providing photons decouple at recombination. CMB travels to us from these spheres.
- Sound speed plummets. Wave stalls at a radius of 150 Mpc.
- Overdensity in shell (gas) and in the original center (DM) both seed the formation of galaxies. Preferred separation of 150 Mpc.





## A Statistical Signal

- The Universe is a superposition of these shells.
- The shell is weaker than displayed.
- Hence, you do not expect to see bullseyes in the galaxy distribution.
- Instead, we get a 1% bump in the correlation function.



## Response of a point perturbation



Remember: This is a tiny ripple on a big background.

Based on CMBfast outputs (Seljak & Zaldarriaga). Green's function view from Bashinsky & Bertschinger 2001.

## Theory and Observables

- $\triangleright$  Linear clustering is specified in proper distance by  $\Omega_{\rm m}h^2$ ,  $\Omega_{\rm b}h^2$ , and n.
- Two scales: acoustic scale and M-R equality horizon scale.
- Measuring both breaks degeneracy between  $\Omega_{\rm m}h^2$  and distance to z=0.35.



 $\Omega_{\rm m}h^2$  shifts ratio of large to small-scale clustering, but doesn't move the acoustic scale much.

# Acoustic Oscillations in Fourier Space

- A crest launches a planar sound wave, which at recombination may or may not be in phase with the next crest.
- Get a sequence of constructive and destructive interferences as a function of wavenumber.
- Peaks are weak suppressed by the baryon fraction.
- Higher harmonics suffer from Silk damping.



Linear regime matter power spectrum

## Acoustic Oscillations, Reprise



- Divide by zerobaryon reference model.
- Acoustic peaks are 10% modulations.
- Requires large surveys to detect!

Linear regime matter power spectrum

#### A Standard Ruler

- The acoustic oscillation scale depends on the sound speed and the propagation time.
  - These depend on the matter-toradiation ratio ( $\Omega_m h^2$ ) and the baryon-to-photon ratio ( $\Omega_b h^2$ ).
- The CMB anisotropies measure these and fix the oscillation scale.
- In a redshift survey, we can measure this along and across the line of sight.
- > Yields H(z) and  $D_A(z)$ !



## Measuring the Acoustic Scale



## Galaxy Redshift Surveys

- Redshift surveys are a popular way to measure the 3-dimensional clustering of matter.
- But there are complications from:
  - Non-linear structure formation
  - Bias (light ≠ mass)
  - Redshift distortions
- Do these affect the acoustic signatures?



#### Nonlinearities & Bias

- Non-linear gravitational collapse erases acoustic oscillations on small scales. However, large scale features are preserved.
- Clustering bias and redshift distortions alter the power spectrum, but they don't create preferred scales at 100h<sup>-1</sup> Mpc!
- Acoustic peaks expected to survive in the linear regime.





Meiksen & White (1997), Seo & DJE (2005)

## Nonlinearities in P(k)

- How does nonlinear power enter?
  - Shifting P(k)?
  - Erasing high harmonics?
  - Shifting the scale?
- Acoustic peaks are more robost than one might have thought.
- Beat frequency difference between peaks and troughs of higher harmonics still refers to very large scale.



## Nonlinearities in $\xi(r)$

- The acoustic signature is carried by pairs of galaxies separated by 150 Mpc.
- Nonlinearities push galaxies around by 3-10 Mpc. Broadens peak, erasing higher harmonics.
- Moving the scale requires net infall on 100 h<sup>-1</sup> Mpc scales.
  - This depends on the overdensity inside the sphere, which is about  $J_3(r)/r^3 \sim 1\%$ .
  - Over- and underdensities cancel, so mean shift is O(10<sup>-4</sup>).
- Simulations show no evidence for any bias at 1% level.



#### Virtues of the Acoustic Peaks

- Measuring the acoustic peaks across redshift gives a purely geometrical measurement of cosmological distance.
- The acoustic peaks are a manifestation of a preferred scale.
  - Non-linearity, bias, redshift distortions shouldn't produce such preferred scales, certainly not at 100 Mpc.
  - Method should be robust.
- However, the peaks are weak in amplitude and are only available on large scales (30 Mpc and up). Require huge survey volumes.

#### Introduction to SDSS LRGs

- SDSS uses color to target luminous, early-type galaxies at 0.2<z<0.5.</p>
  - Fainter than MAIN (r<19.5)</li>
  - About 15/sq deg
  - Excellent redshift success rate
- The sample is close to mass-limited at z<0.38.</p>
  Number density ~ 10<sup>-4</sup> h<sup>3</sup>
  Mpc<sup>-3</sup>.



- Science Goals:
  - Clustering on largest scales
  - Galaxy clusters to z~0.5
  - Evolution of massive galaxies



## 55,000 Spectra



## A Volume-Limited Sample



#### Intermediate-scale Correlations





Zehavi et al. (2004)

- Subtle luminosity dependence in amplitude.
  - $\sigma_8 = 1.80 \pm 0.03$  up to 2.06 ± 0.06 across samples
  - $r_0 = 9.8h^{-1}$  up to  $11.2h^{-1}$  Mpc
- > Real-space correlation function is not a power-law.

## Halo Occupation Modeling

- The distribution of dark matter halo masses for the galaxies determines their clustering.
- $\triangleright$  Generically predict an inflection in  $\xi(r)$ .



From Zheng Zheng; similar to Zehavi et al. (2004)

## On to Larger Scales....

## Large-scale Correlations



Warning: Correlated Error Bars

### **Another View**



#### **A Prediction Confirmed!**

- Standard inflationary CDM model requires acoustic peaks.
  - Important confirmation of basic prediction of the model.
- ➤ This demonstrates that structure grows from z=1000 to z=0 by linear theory.
  - Survival of narrow feature means no mode coupling.



#### Two Scales in Action



#### Parameter Estimation

- $\triangleright$  Vary  $Ω_m h^2$  and the distance to z = 0.35, the mean redshift of the sample.
  - Dilate transverse and radial distances together, i.e., treat  $D_A(z)$  and H(z) similarly.
- > Hold  $Ω_b h^2 = 0.024$ , n = 0.98 fixed (WMAP).
  - Neglect info from CMB regarding  $\Omega_m h^2$ , ISW, and angular scale of CMB acoustic peaks.
- Use only r>10h<sup>-1</sup> Mpc.
  - Minimize uncertainties from non-linear gravity, redshift distortions, and scale-dependent bias.
- Covariance matrix derived from 1200 PTHalos mock catalogs, validated by jack-knife testing.

## Cosmological Constraints



## Measuring a Known Scale

- > For a given  $\Omega_{\rm m}h^2$ , the acoustic scale is known.
- ➤ We measure it in the CMB at z=1000 to 1% and in SDSS at z=0.35 to 4%.
- > This constrains  $\Omega_{\rm m}$ ,  $\Omega_{\rm K}$ , and dark energy in two separate redshift ranges: 0<z<0.35 and 0.35<z<1000.

$$\int_0^{1000} \frac{c \, dz}{H(z)} - \int_0^{0.35} \frac{c \, dz}{H(z)} = \int_{0.35}^{1000} \frac{c \, dz}{H(z)}$$
(Flat)

#### A Standard Ruler

- If the LRG sample were at z=0, then we would measure  $H_0$  directly (and hence  $\Omega_{\rm m}$  from  $\Omega_{\rm m} h^2$ ).
- Instead, there are small corrections from w and  $\Omega_K$  to get to z=0.35.
- The uncertainty in  $\Omega_{\rm m}h^2$  makes it better to measure  $(\Omega_{\rm m}h^2)^{1/2}$  D. This is independent of  $H_0$ .



 $\triangleright$  We find  $\Omega_{\rm m} = 0.273 \pm 0.025 + 0.123(1+w_0) + 0.137 <math>\Omega_{\rm K}$ .

### **Essential Conclusions**

- SDSS LRG correlation function does show a plausible acoustic peak.
- > Ratio of D(z=0.35) to D(z=1000) measured to 4%.
  - This measurement is insensitive to variations in spectral tilt and small-scale modeling. We are measuring the same physical feature at low and high redshift.
- $\triangleright \Omega_m h^2$  from SDSS LRG and from CMB agree. Roughly 10% precision.
  - This will improve rapidly from better CMB data and from better modeling of LRG sample.
- $> \Omega_{\rm m} = 0.273 \pm 0.025 + 0.123(1+w_0) + 0.137\Omega_{\rm K}$

### Constant w Models

- For a given w and  $\Omega_m h^2$ , the angular location of the CMB acoustic peaks constrains  $\Omega_m$  (or  $H_0$ ), so the model predicts  $D_A(z=0.35)$ .
- > Good constraint on  $\Omega_m$ , less so on w (-0.8±0.2).



### **∧** + Curvature

Consider models with w = −1 (aka, Λ) but with non-zero curvature.



### **∧** + Curvature



Common distance scale to low and high redshift yields a powerful constraint on spatial curvature:

$$\Omega_{\rm K} = -0.010 \pm 0.009 \quad (w = -1)$$

## Beyond SDSS

- By performing large spectroscopic surveys at higher redshifts, we can measure the acoustic oscillation standard ruler across cosmic time.
- > Higher harmonics are at  $k\sim0.2h$  Mpc<sup>-1</sup> ( $\lambda=30$  Mpc)
- Measuring 1% bandpowers in the peaks and troughs requires about 1 Gpc³ of survey volume with number density ~10⁻³ comoving h³ Mpc⁻³ = ~1 million galaxies!
- $\triangleright$  We have considered surveys at z=1 and z=3.
  - Hee-Jong Seo & DJE (2003, ApJ, 598, 720)
  - Also: Blake & Glazebrook (2003), Linder (2003), Hu & Haiman (2003).

## A Baseline Survey at z = 3



Statistical Errors from the *z*=3 Survey

- > 600,000 gal.
- > ~300 sq. deg.
- > 10<sup>9</sup> Mpc<sup>3</sup>
- > 0.6/sq. arcmin
- Linear regime k<0.3h Mpc<sup>-1</sup>
- > 4 oscillations

## A Baseline Survey at z = 1



- > 2,000,000 gal., z = 0.5 to 1.3
- > 2000 sq. deg.
- > 4x10<sup>9</sup> Mpc<sup>3</sup>
- > 0.3/sq. arcmin
- Linear regime k<0.2h Mpc<sup>-1</sup>
- > 2-3 oscillations

Statistical Errors from the z=1 Survey

## Methodology

Hee-Jong Seo & DJE (2003)

- > Fisher matrix treatment of statistical errors.
  - Full three-dimensional modes including redshift and cosmological distortions.
  - Flat-sky and Tegmark (1997) approximations.
  - Large CDM parameter space:  $\Omega_m h^2$ ,  $\Omega_b h^2$ , n, T/S,  $\Omega_m$ , plus separate distances, growth functions,  $\beta$ , and anomalous shot noises for all redshift slices.
- Planck-level CMB data
- > Combine data to predict statistical errors on w(z)=  $w_0 + w_1 z$ .

## **Baseline Performance**



Distance Errors versus Redshift

### Results for ACDM

- Data sets:
  - CMB (*Planck*)
  - SDSS LRG (z=0.35)
  - Baseline z=1
  - Baseline z=3
  - SNe (1% in  $\Delta z$ =0.1 bins to z=1 for ground, 1.7 for space)
- >  $\sigma(\Omega_{\rm m}) = 0.027$   $\sigma(w) = 0.08$  at z = 0.7 $\sigma(dw/dz) = 0.26$
- >  $\sigma(w)$ = 0.05 with ground SNe



Dark Energy Constraints in ACDM

# Breaking the w-Curvature Degeneracy

- To prove w ≠ -1, we should exclude the possibility of a small spatial curvature.
- SNe alone, even with space, do not do this well.
- SNe plus acoustic oscillations do very well, because the acoustic oscillations connect the distance scale to z=1000.



## How best to measure H(1)?

- These baseline surveys plus ground SNe measurement of D(0.8)/D(0.5) to 1% (2% in flux) predict the value of D(1.7)/D(0.8) to 0.6% (1.2% in flux) for a very general w(z)+ curvature model.
- Not surprising that D(1.7)/D(0.8) is essentially the same as  $H(z=1)/H_0$ .
- Ground-based acoustic oscillations may be completely degenerate with higher redshift SNe.



## Opening Discovery Spaces

With 3 redshift surveys, we actually measure dark energy in 4 redshift ranges: 0<z<0.35, 0.35<z<1, 1<z<3, and 3<z<1000.</p>

SNe should do better at pinning down D(z) at z<1. But acoustic method opens up high z and H(z) to find the

unexpected.

Weak lensing, clusters also focus on z<1. These depend on growth of structure. We would like both a growth and a kinematic probe to look for changes in gravity.</p>



## A Better Mousetrap

- How to survey a million galaxies at z = 1 over 1000 sq. deg? Or half a million at z = 3 over 300 sq. deg?
- This is a large step over on-going surveys, but it is a reasonable goal for the coming decade.
- KAOS spectrograph concept for Gemini (GWFMOS) could do these surveys in a year.
  - 4000-5000 fibers, using Echidna technology, feeding multiple bench spectrographs.
  - 1.5 degree diameter FOV
  - http://www.noao.edu/kaos
  - Well ranked in Aspen process.
  - Also high-res for Galactic studies.
  - Currently finishing feasibility study.



## Other Spectroscopic Options

- > Near-term
  - Second half of SDSS
  - AAOmega: LRGs at z=0.6
  - FMOS:  $H\alpha$  at z=1.5
- > Next Generation
  - WFMOS: z=1 & z=3
  - HETDEX: Ly $\alpha$  at z=2-3
- > Lyman α forest?

- Towards full sky
  - BOP: Hα in space, 10<sup>4</sup> deg<sup>2</sup> out to z=2.
  - JEDI: Hα in space up to 10<sup>4</sup> deg<sup>2</sup>.
  - SKA: 21 cm to z=1.5, full visible sky.

## Performance from 10<sup>4</sup> deg<sup>2</sup>

|                                                         | Spectro  | Spectro |
|---------------------------------------------------------|----------|---------|
|                                                         | $D_A(z)$ | H(z)    |
| 0.5 <z<0.8< th=""><th>0.94%</th><th>1.2%</th></z<0.8<>  | 0.94%    | 1.2%    |
| 0.8 <z<1.2< th=""><th>0.46%</th><th>0.57%</th></z<1.2<> | 0.46%    | 0.57%   |
| 1.2 <z<1.8< th=""><td>0.34%</td><td>0.42%</td></z<1.8<> | 0.34%    | 0.42%   |
| 1.8 <z<2.4< th=""><th>0.28%</th><th>0.35%</th></z<2.4<> | 0.28%    | 0.35%   |
| 3.0 <z<4.0< th=""><th>0.23%</th><th>0.28%</th></z<4.0<> | 0.23%    | 0.28%   |

- > Adopting  $n = 0.001 h^3 \text{ Mpc}^{-3}$ .
- With 1% D(0.8)/D(0.05) and z<2.4,  $w_p = 0.025$ ,  $w_a = 0.20$ . Predicts D(1.7)/D(0.8) to 0.004 mag.

### **Photometric Redshifts?**

- Can we do this without spectroscopy?
- Measuring H(z) requires detection of acoustic oscillation scale along the line of sight.
  - Need ~10 Mpc accuracy.  $\sigma_z$ ~0.003(1+z).
- But measuring D<sub>A</sub>(z) from transverse clustering requires only 4% in 1+z.
- Need ~half-sky survey to match 1000 sq. deg. of spectra.
- Less robust, but likely feasible.



4% photo-z's don't smear the acoustic oscillations.

### **Cross-Correlation Cosmography**

- Weak lensing cross-correlation cosmography could in principle measure D(z) to superb precision (0.02% for full sky in space), save for a degeneracy of the form  $\alpha_0(D + \alpha_1 D^2 + \alpha_2 D^3)$ , where  $\alpha_2$  depends only on  $\Omega_{\rm K}$ . (Bernstein 2005)
  - Bad news: this is very degenerate with simple w(z).
  - Good news: if one can measure  $\alpha_1$  and  $\alpha_2$  well by other means, then one can constrain more complicated D(z) modes far better. Measuring these well may slant the optimization of surveys.
  - "Spaceship One" version: Could measure curvature independently of CMB and then use CMB acoustic scale to measure w at z>4.

## What about $H_0$ ?

- Does the CMB+LSS+SNe really measure the Hubble constant? What sets the scale in the model?
  - The energy density of the CMB photons plus the assumed a neutrino background gives the radiation density.
  - The redshift of matter-radiation equality then sets the matter density  $(\Omega_m h^2)$ .
  - Measurements of  $\Omega_m$  (e.g., from distance ratios) then imply  $H_0$ .
- Is this good enough?

## What about $H_0$ ?

- What if the radiation density were different, (more/fewer neutrinos or something new)?
  - Sound horizon would be shifted in scale. LSS inferences of  $\Omega_m$ ,  $\Omega_k$ , w(z), etc, would be correct, but  $\Omega_m h^2$  and  $H_0$  would be shifted.
  - Baryon fraction would be changed ( $\Omega_b h^2$  is fixed).
  - Anisotropic stress effects in the CMB would be different. This is detectable with Planck.
- So H<sub>0</sub> is either a probe of "dark radiation" or dark energy (assuming radiation sector is simple).
  - 1 neutrino species is roughly 5% in  $H_0$ .
  - We could get to ~1%.

# Pros and Cons of the Acoustic Peak Method

#### Advantages:

- Geometric/trigonometric measure of distance.
- Robust to systematics.
- Individual measurements are not hard (but you need a lot of them!).
- Can probe z>2.
- Can measure H(z) directly (with spectra).

#### Disadvantages:

- Raw statistical precision at z<1 lags SNe and lensing/clusters.
  - Full sky would help.
- If dark energy is close to Λ, then z<1 is more interesting.
- Calibration of standard ruler requires inferences from CMB.
  - But this doesn't matter for relative distances.

### Conclusions

- $\triangleright$  Acoustic oscillations provide a robust way to measure H(z) and D<sub>A</sub>(z).
  - Clean signature in the galaxy power spectrum.
  - Can probe high redshift.
  - Can probe H(z) directly.
  - Independent method with similar precision to SNe.
- > SDSS LRG sample uses the acoustic signature to measure  $D_A(z=0.35)/D_A(z=1000)$  to 4%.
- Large high-z galaxy surveys are feasible in the coming decade.
- Order from KAOS! http://www.noao.edu/kaos



### Distances to Acceleration



### Distances to Acceleration



### Distances to Acceleration



### **Nonlinear Corrections**



## **An Optimal Number Density**

- Since survey size is at a premium, one wants to design for maximum performance.
- Statistical errors on large-scale correlations are a competition between sample variance and Poisson noise.
  - Sample variance: How many independent samples of a given scale one has.
  - Poisson noise: How many objects per sample one has.
- Given a fixed number of objects, the optimal choice for measuring the power spectrum is an intermediate density.
  - Number density roughly the inverse of the power spectrum.
    - 10-4 h<sup>3</sup> Mpc-3 at low redshift; a little higher at high redshift.
  - Most flux-limited surveys do not and are therefore inefficient for this task.

## Higher Redshifts Perform Better

- Nonlinear gravitational clustering erases the acoustic oscillations.
- This is less advanced at higher redshifts.
- Recovering higher harmonics improves the precision on distances.
- Leverage improves from z=0 to z=1.5, then saturates.



## A Volume-Limited Sample



## Luminosity-dependent Bias

- Bias appears to change noticeably (40%?) at the luminous end, even within the narrow LRG range.
- We will need to be careful when combining z>0.4 and z<0.4.</p>



## Real-space Correlations





Zehavi et al. (2004)

- Obvious deviations from power laws!
- $\sigma_8 = 1.80 \pm 0.03$  up to 2.06 ± 0.06 across samples
- $r_0 = 9.8h^{-1}$  up to  $11.2h^{-1}$  Mpc

## Halo Occupation Modeling

- The distribution of dark matter halo masses for the galaxies determines their clustering.
- $\triangleright$  Generically predict an inflection in  $\xi(r)$ .



From Zheng Zheng; similar to Zehavi et al. (2004)

### **Redshift Distortions**

Redshift distortions will be interesting for the study of the host halos of LRGs, but are a nuisance for the extraction of Alcock-Paczynski distortions of the isotropic power.



### Redshift Distortions

- Redshift surveys are sensitive to peculiar velocities.
- Since velocity and density are correlated, there is a distortion even on large scales.
- Correlations are squashed along the line of sight (opposite of finger of god effect).





## Measuring a Known Scale

- > For a given  $\Omega_{\rm m}h^2$ , the acoustic scale is known.
- We measure it in the CMB at z=1000 to 1% and in SDSS at z=0.35 to 4%.

This constrains  $\Omega_{\rm m}$ ,  $\Omega_{\rm K}$ , and dark energy in two separate redshift ranges: 0<z<0.35 and 0.35<z<1000.



### Constant w Models

As before,
 but now
 overlaid with
 grid of H<sub>0</sub>
 and w.

